Update of Power Deposition Studies in the LHC Upgrade Phase I Insertion Regions

F. Cerutti¹ A. Mereghetti¹ E. Wildner²

 $1_{\rm AB/ATB/EET}$

 $^{2}\mathrm{AT}/\mathrm{MCS}/\mathrm{MDE}$

October 16^{th} , 2008

Outline

1 the new layout

- a general overview
- the triplet: 120 mm aperture
- the corrector package: 140 mm aperture possible shielding?
- the new definition of cable materials

Outline

1 the new layout

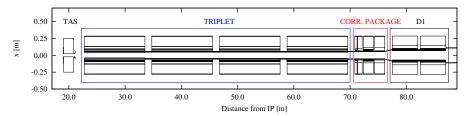
- a general overview
- the triplet: 120 mm aperture
- the corrector package: 140 mm aperture possible shielding?
- the new definition of cable materials

2 power deposition results

- \bullet the triplet
- the corrector package
- the aperture effect
- the D1

Outline

1 the new layout


- a general overview
- the triplet: 120 mm aperture
- the corrector package: 140 mm aperture possible shielding?
- the new definition of cable materials

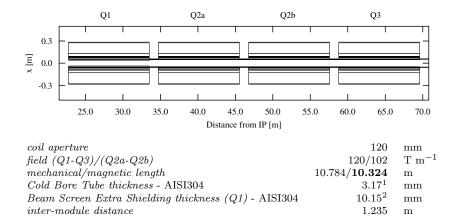
2 power deposition results

- \bullet the triplet
- the corrector package
- the aperture effect
- the D1

3 Conclusions

General overview

TAS, TAN and D2: *actual* positions i.e. as they are now in the LHC tunnel.

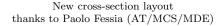

element	distance from IP [m]
TAS	19.503
TAN	140.45
D2	153.18

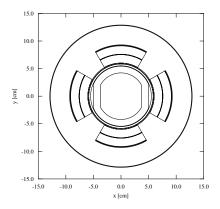
TAS aperture: ${\bf 45}~{\rm mm}$

a 2-modules RHIC-style D1:

coil aperture [mm]	180
field [T]	4.04
mechanical/magnetic length [m]	4.5/ 3.7
Cold Bore Tube thickness [mm]	5.6
Warm Bore Tube thickness [mm]	1.7
distance corr. pack D1 [m]	1.335
inter-module distance [m]	0.5

The TRIPLET - layout

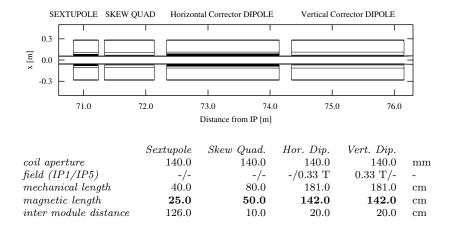

FDDF wrt horizontal plane.


(AB/ATB/EET, AT/MCS/MDE)

 $^{^1\}mathrm{according}$ to: $\mathrm{CBT_{th}}=0.0272{\cdot}\mathrm{D_{out}}$

²as for the 110 mm case.

The TRIPLET - cross section

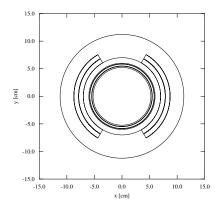


layer	material	thickness
		[mm]
insulation	Kapton	0.16
cable	SC mat. 1	15.1
insulation	Kapton	0.16
spacer	G11	0.5
insulation	Kapton	0.16
cable	SC mat. 2	15.1
insulation	Kapton	0.16
quench heater	Kapton	0.25
ground ins.	Kapton	0.5
coil prot. sheet	AISI316L	1.0
collar	AISI304	35.0
empty space	Vacuum	1.0
yoke	$Iron^a$	145.91
steel shell	AISI316L	10.0

^aComposition (mass fraction [%]):

$98.2 \\ 0.2$	Fe	1.0	\mathbf{C}	0.4	Mn
0.2	Cu	0.1	Ni	0.1	Si

The CORRECTOR PACKAGE - layout


the CBT and Beam Screen thicknesses are identical to those of the Triplet; -> 10 mm gap between CBT and aperture !

AB/ATB/EET, AT/MCS/MDE)

Power Deposition Studies

The CORRECTOR PACKAGE - cross sections (I)

New cross-section layout of the dipole corrector

layer	material	thickness
		[mm]
insulation	Kapton	0.08
cable	Dipole SC	8.3
insulation	Kapton	0.08
spacer	G11	0.24
insulation	Kapton	0.08
cable	Dipole SC	8.3
insulation	Kapton	0.08
	G11	0.24
collar	AISI304	24.76
yoke	$Iron^a$	162.84
steel shell	AISI316L	10.0

^aSame as for Triplet Quad.

7 / 20

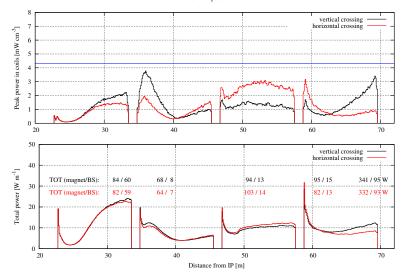
The CORRECTOR PACKAGE - cross sections (II)

cross-section layout of the sextupole and skew quadrupole correctors thanks to Mikko Karppinen (AB/MCS/ML)

15.0 10.0 5.0 0.0 -5.0 -10.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 -15.0 15.0 10.0 5.0 0.0 -5.0 -10.0 -15.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 AB/ATB/EET, AT/MCS/MDE)

layer	material	Sextupole thickness [mm]	Sqew Quad. thickness [mm]
insulation	Kapton	0.08	0.08
cable	SC mat. 1	10.0	4.0
insulation	Kapton	0.08	0.08
spacer	G11		0.24
insulation	Kapton		0.08
cable	SC mat. 1		4.0
insulation	Kapton		0.08
collar	AISI304	25.0	25.0
yoke	$Iron^a$	169.84	171.44
steel shell	AISI316L	10.0	10.0

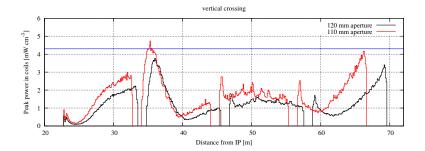
^aSame as for Triplet Quad.

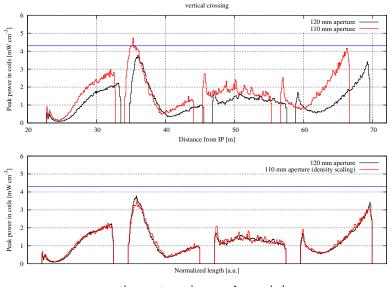

The material in the cable regions has been re-defined: the **Cu wedges** in-between cables were **not** considered

		Cable 1	Cable 2	Dipole	
Cu to SC ratio		1.65	1.95	1.75	(volume)
void fraction		$13 \ \%$	14 %	12.26 %	(volume)
mean cable thickness		1.9	1.48	0.85	mm
Material	density $[g \text{ cm}^{-3}]$	fraction by volume [%]			
Cu	8.96	47.16	47.47	55.83	
Nb	8.57	10.69	9.09	11.93	
Ti	4.54	17.83	15.26	19.97	
Liquid He	0.122	11.37	11.58	12.26	
Kapton	1.42	12.94	16.60	-	
density		6.15	5.97	6.95	${\rm g~cm^{-3}}$

thanks to John Miles (AB/ABP/LCU)

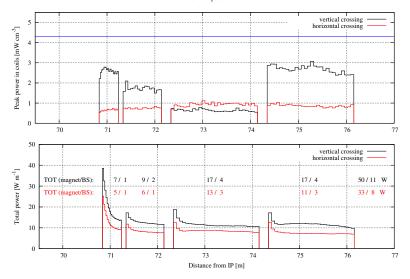
The TRIPLET - crossing schemes


120 mm aperture

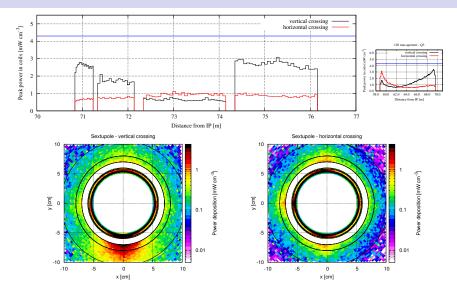

 \ldots the horizontal crossing scheme seems to be preferable

Power Deposition Studies

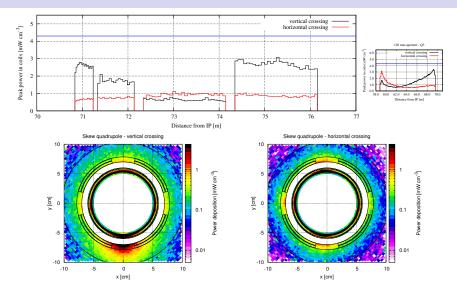
The TRIPLET - in the past?



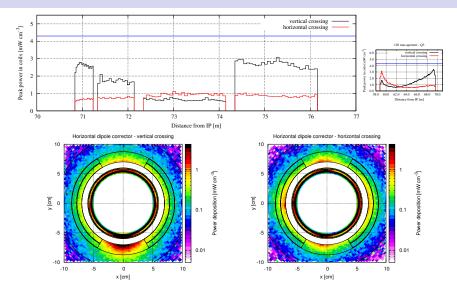
The TRIPLET - in the past?

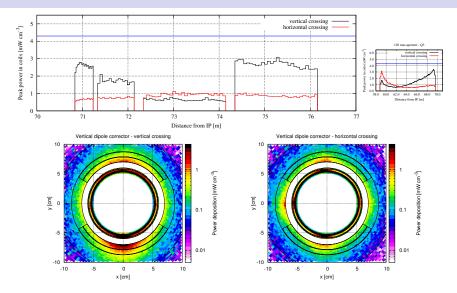

-> the aperture plays a **minor** role !

140 mm aperture

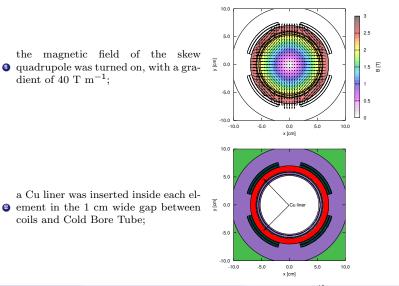


 \dots the horizontal crossing scheme seems to be preferable


Power Deposition Studies

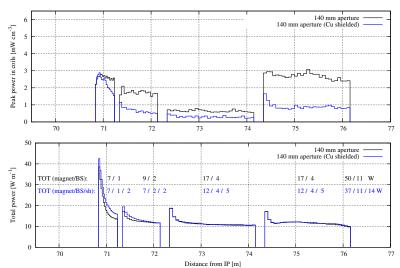

for the horizontal crossing: the TRIPLET is **FDDF**

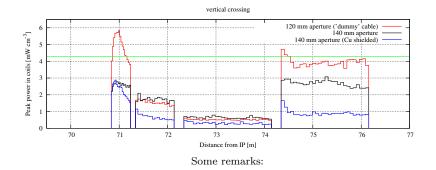
coils in good position!

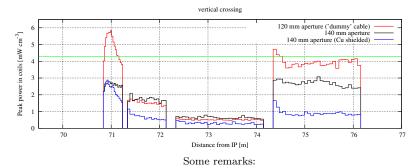

coils in good position!

for the horizontal crossing: the TRIPLET is **FDDF**

The CORRECTOR package - theme and variations...

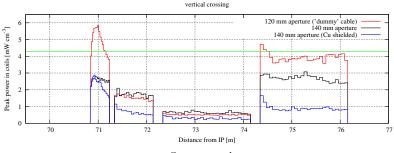

Two more independent cases were studied:


(AB/ATB/EET, AT/MCS/MDE)


Power Deposition Studies

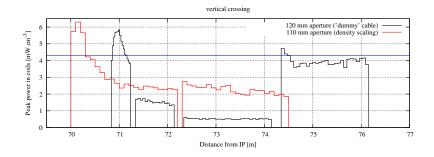
The CORRECTOR package - theme and variations: Cu Liner

vertical crossing


• with **vertical** crossing, the corrector package is below the design limit, and a Cu liner in-between the coils and the Cold Bore Tube is helpful downstream, especially on the **vertical** dipole corrector;

• with **vertical** crossing, the corrector package is below the design limit, and a Cu liner in-between the coils and the Cold Bore Tube is helpful downstream, especially on the **vertical** dipole corrector;

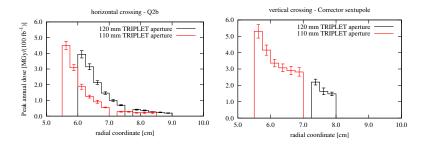
• there is a **net gain** in having the Corrector aperture **larger** then the Triplet aperture, namely by a factor of **2**: **6** mW cm⁻³ for the *110* mm case versus **3** mW cm⁻³ for the *140* mm;


AB/ATB/EET, AT/MCS/MDE)

Some remarks:

- with **vertical** crossing, the corrector package is below the design limit, and a Cu liner in-between the coils and the Cold Bore Tube is helpful downstream, especially on the **vertical** dipole corrector;
- there is a **net gain** in having the Corrector aperture **larger** then the Triplet aperture, namely by a factor of **2**: **6** mW cm⁻³ for the *110* mm case versus **3** mW cm⁻³ for the *140* mm;
- bringing the aperture of only the dipole correctors to 120 mm represents a problem for the for the **vertical** dipole corrector, in case of **vertical** crossing;

The CORRECTOR package - in the past?



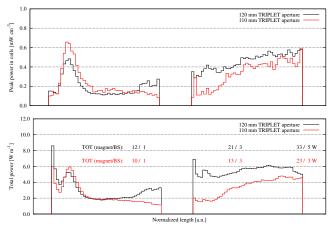
if the CORRECTOR and the TRIPLET aperture were the same, there would be the same situation found for the 110 mm TRIPLET aperture case.

-> only 1 effect is playing:

the different **aperture** between the TRIPLET and the CORRECTOR package;

The aperture effect - Dose

Triplet having increased the aperture from 110 mm to 120 mm plays a very minor role;

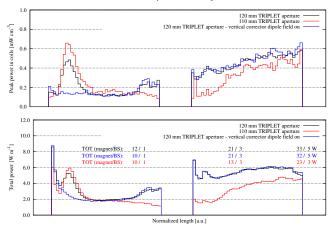

Corrector having increased the aperture not only to 120 mm but to the larger value of 140 mm plays the major role;

binning:

$$\Delta \phi = 2 \text{ deg};$$

 $\Delta r = 2.5 \text{ mm};$
 $\Delta z = 10/2.5 \text{ cm};$

The D1


180 mm D1 aperture - vertical crossing

- the heat load onto the 2^{nd} module of the D1 is increased with the 120 mm TRIPLET aperture option;
- the horizontal scheme is safer for both peak and totals, as already seen for the 110 mm TRIPLET aperture case;

The D1

180 mm D1 aperture - vertical crossing

the power deposition in the D1 is sensitive to the corrector magnetic configuration;

AB/ATB/EET, AT/MCS/MDE)

Power Deposition Studies

October 16th, 2008 19 / 20

Conclusions

general horizontal crossing scheme: safer (wrt the power deposition in the Triplet, the Corrector package and the D1);

triplet no substantial gain in changing the aperture from 110 mm to 120 mm;

corrector

- vertical crossing: the sextupole and the vertical corrector dipole are quite loaded (due to TRIPLET optics), even if within the design limit;
- a 1 cm Cu liner: helpful in the vertical crossing scheme, especially in protecting the vertical corrector dipole;
- (2) the different aperture of the corrector package wrt the triplet's one is the key-factor in protecting the corrector package itself, decreasing the peak at the beginning of the sextupole by a factor of 2;
- a reduction of the dipole corrector aperture implies a shielding liner upstream; nevertheless, in case of vertical crossing tha last dipole corrector is significantly impacted;
- D1
- **()** the peak pattern is sensitive to the corrector magnetic configuration;
- higher total load (21 W vs 13 W) on the second element of D1 wrt to the previous case (110 mm triplet aperture);