

Francesco CERUTTI

Marco MAURI

Alessio MEREGHETTI

Elena WILDNER

13th LIUWG meeting

Overview

power deposition due to collision debris at $L = 2.5 L_0$ with 220 μ rad half crossing angle in the vertical plane (upwards)

no experimental vacuum chamber

back to the triplet (symmetric layout, 130mm coil aperture)

- last episode lesson
- total power in the quadrupoles and its distribution
- effect of the corrector magnetic field
- role of end plates in protecting the coils on the IP-side of Q2a
- increased Q1-corrector beam screen thickness for the same purpose
- update of the symmetric layout
- crossing angle effect
- magnetic TAS

the new D1

- implementation of the superconducting, superferric and resistive models
- peak power/dose and total power

conclusions/perspectives

Peak power in the triplet coils

Z (cm)

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

Apr 2, 2008

< 0 > < 0 >

Peak power in the triplet coils

continuous *stainless steel* beam screen and cold bore tube (2 mm and 3.44 mm thick, respectively, according to mechanical needs)

no additional protection

Peak power in the triplet coils

3 mm thick tungsten liner all along the triplet for magnet protection

13th LIUWG meeting

Total power in the quadrupoles [I]

no additional protection (2 mm stainless steel beam screen)

with additional protection (3 mm tungsten in the magnets, 5 mm SSteel in the interconnections)

	Q1	Q2a	Q2b	Q3
whole magnet	102.0	86.6	81.6	107.9
	111.6	70.0	81.4	98.8
1st cable	28.6	17.1	20.7	23.8
	17.4	7.9	10.2	11.0
2nd cable	15.0	11.3	10.4	13.0
	10.2	5.4	5.9	6.7
beam pipe	10.6	8.0	10.3	13.6
	7.2	4.1	5.4	6.0
beam screen	6.8	6.0	8.8	12.2
	8.8	7.2	10.4	13.9
shielding	/	/	/	/
	32.2	18.1	26.4	31.5

values in W

13th LIUWG meeting

<ロ> (四)、(四)、(日)、(日)、

Total power in the quadrupoles [II]

13th LIUWG meeting

< □ > < □ > < □ > < □ > < □ > < □ >

Magnetic field

solenoid field

Q1 & Q3 field

original implementation of the solenoid field

by F. Broggi (INFN)

イロト イヨト イヨト イヨト

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

æ

Switching on the corrector magnetic field

0.47 T m $i.e. \sim 20 \ \mu rad$ negative vertical kick

Settings: Baseline case (no extra shielding)

Possible role of end plates

black hole shielding the Q2a IP-side outside the beam pipe

æ

<ロ> (四)、(四)、(日)、(日)、

Possible role of end plates

black hole shielding the Q2a IP-side outside the beam pipe

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

イロト イヨト イヨト イヨト

Sac

additional shielding of 13 mm stainless steel casting a shadow over Q2a

13th LIUWG meeting

イロト イポト イヨト イヨト

additional shielding of 13 mm stainless steel casting a shadow over Q2a

13th LIUWG meeting

(日) (日) (日) (日) (日)

200

▲□▶ ▲□▶ ▲三≯ ▲三≯ 三三 シタペ

back to the corrector dipole field effect

additional shielding of 13 mm stainless steel casting a shadow over Q2a

Settings: Extra shielding: 13mm AISI (only in Q1 and QC)

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

Image: A math the second se

Update of the symmetric layout

thanks to E. Todesco (AT-MCS)

112 T/m (vs. 122 T/m) quadrupole gradient

additional shielding of 13 mm stainless steel

Update of the symmetric layout

additional shielding of 13 mm stainless steel

13th LIUWG meeting

・ロト ・日ト ・ヨト

Total power for the shielded configuration of the updated layout [I]

longitudinal distribution

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

200

Total power for the shielded configuration of the updated layout [II]

	Q1	Q2a	Q2b	Q3
beam screen	14	5	10	14
shielding	56	/	/	/
beam pipe	7	6	12	16
1st cable	17	11	23	25
2nd cable	10	5	10	12
SSteel collar	21	10	18	25
iron yoke	24	10	15	22

values in W

13th LIUWG meeting

・ロト ・四ト ・モト ・モト

200

æ

Power density for the shielded configuration of the updated layout

in the vertical plane all along the triplet

13th LIUWG meeting

イロト イヨト イヨト イヨト

Searching for minimum thickness liner in Q1 and corrector

additional shielding of 8 mm stainless steel

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

Apr 2, 2008

(日) (日) (日) (日) (日)

200

Azimuthal distribution at the inner cable peak

~ ~ ~ ~

Influence of the crossing angle

checking for nominal optics and head-on collisions $L=2.5\,L_0 \text{ for all cases}$

Settings: Extra shielding: 13mm AISI (ONLY in Q1 and QC) - QC field ON

vertical crossing plane (transverse component of beam momentum upwards directed)

A magnetic TAS ?

1 T dipole field in the 1.8 m long TAS vacuum chamber \sim 80 μ rad positive/negative vertical kick

Settings: Extra shielding: 13mm AISI (ONLY in Q1 and QC) - QC field ON

13th LIUWG meeting

A D F A B F A B F

Extension of the insertion model

lattice capability implemented

13th LIUWG meeting

イロト イヨト イヨト イヨト

Extension of the insertion model

original version of the TAN geometry from M. Fuerstner (SC-RP)

13th LIUWG meeting

イロト イヨト イヨト イヨト

200

Resistive D1

thanks to M. Karppinen (AT-MCS)

< @ >

13th LIUWG meeting

Apr 2, 2008

500

Total power for the resistive D1

longitudinal distribution

Apr 2, 2008

Peak dose in the coils of the resistive D1

1 x 1 x 1 (5) cm³ scoring grid

13th LIUWG meeting

イロト イヨト イヨト イヨト

3

Superferric D1

D1 (superferric) return coils

thanks to D. Tommasini (AT-MCS)

13th LIUWG meeting

æ

2.5

2

0.5

0

1.5 Lipeq

Total power for the superferric D1

longitudinal distribution

Apr 2, 2008

Peak power in the (Cu) coils of the superferric D1

no protection implemented!

13th LIUWG meeting

3

イロト イヨト イヨト イヨト

Superconducting D1

Magnetic field [T]

2

130 mm aperture

horizontal beam screen

thanks to J. Bruer (AT-MCS)

з

Total power for the superconducting D1

16 W in the coils

eting Apr 2, 2008

Peak power in the coils of the superconducting D1 [I]

no protection implemented!

13th LIUWG meeting

・ロト ・日下・ ・日下

Azimuthal distribution at the cable peak

no protection implemented!

13th LIUWG meeting

Apr 2, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Peak power in the coils of the superconducting D1 [II]

no protection implemented!

13th LIUWG meeting

Conclusions

vertical crossing plane, horizontally FDDF triplet \Rightarrow peaks in the vertical plane (initially at 90° and then at -90° for positive crossing angle)

Q1 non-IP side and Q2a IP-side are the critical point: liner in Q1 (and corrector) either extended along the interconnection too or of increased thickness to cast a shadow

with this protection option highest peak at the Q3 non-IP side

 ${\sim}400$ W the triplet total load

larger the crossing angle, higher the peak power density a magnetic TAS can play a role "closing" the crossing angle

a 130mm aperture superconducting D1 is not expected to quench (minimal protection needed)

the same for a superferric D1

for the first module of a resistive D1 the damage to the insulator in the return coils (on the IP-side) can have an impact on the magnet lifetime (protection can be envisaged)

13th LIUWG meeting

Apr 2, 2008

・ロト ・日ト ・ヨト ・ヨト

Perspectives

- horizontal crossing plane
- experimental vacuum chamber
- energy deposition in the TAN
- contribution of beam losses in the TCT
- triplet misalignment
- looking at the matching section

The FLUKA team & AT-MCS-MDE

13th LIUWG meeting

Apr 2, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●三